Standard Guide for Controlling the Quality of Industrial Radiographic Film Processing

This standard is issued under the fixed designation E 999; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (e) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This guide establishes guidelines that may be used for the control and maintenance of industrial radiographic film processing equipment and materials. Effective use of these guidelines aid in controlling the consistency and quality of industrial radiographic film processing.

1.2 Use of this guide is limited to the processing of films for industrial radiography. This guide includes procedures for wet-chemical processes and dry processing techniques.

1.3 The necessity of applying specific control procedures such as those described in this guide is dependent, to a certain extent, on the degree to which a facility adheres to good processing practices as a matter of routine procedure.

1.4 If a nondestructive testing agency as described in Practice E 543 is used to perform the examination, the testing agency shall meet the requirements of Practice E 543.

1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of federal and local codes prior to use.

2. Referenced Documents

2.1 ASTM Standards:
- E 94 Guide for Radiographic Testing
- E 543 Practice for Agencies Performing Nondestructive Testing
- E 1079 Practice for Calibration of Transmission Densitometers
- E 1254 Guide for Storage of Radiographs and Unexposed Industrial Radiographic Films
- E 1316 Terminology for Nondestructive Examinations

2.2 ANSI Standard:

3. Terminology

3.1 Definitions—For definitions of terms used in this guide, see Terminology E 1316.

4. Significance and Use

4.1 The provisions in this guide are intended to control the reliability or quality of the image development process only and are not intended for controlling the acceptability or quality of industrial radiographic films or of the materials or products radiographed. It is further intended that this guide be used as an adjunct to and not a replacement for Guide E 94.

5. Chemical Mixing for Manual and Automatic Processes

5.1 Any equipment that comes in contact with processing solutions should be made of glass, hard rubber, polyethylene, PVC, enameled steel, stainless steel, or other chemically inert materials. This includes materials such as plumbing, mixing impellers, and the cores of filter cartridges. Do not allow materials such as tin, copper, steel, brass, aluminum, or zinc to come into contact with processing solutions. These materials can cause solution contamination that may result in film fogging or rapid oxidation.

5.2 Mixing Chemicals:

5.2.1 Do not mix powdered chemicals in processor tanks, since undissolved particles may be left in the square corners of the tank. Mix solutions in separate containers made from materials specified in 5.1.

5.2.2 Carefully follow the manufacturer’s package directions or formulas for mixing the chemicals. Start with the correct volume of water at the temperature specified in the instructions, and add chemicals in the order listed.

5.2.3 Caution—During the mixing and use of photographic processing chemicals, be sure to observe all precautionary information on chemical containers and in instructions.

5.3 Contamination of Solutions:

5.3.1 Thoroughly clean all mixing equipment immediately after use to avoid contamination when the next solution is mixed. When mixing fixer from powder, make sure to add the powder carefully to the water in the mixing tank so that mixer

1 Available from American National Standards Institute, 11 West 42nd Street, 13th Floor, New York, NY 10036.
6.5 Contamination: Liquid chemicals are provided in containers with tight-fitting tops. To avoid contamination, never interchange the top of one container with another.

6.5.2 Clearly label replenisher storage tanks with the solution that they contain and use that container only with that solution. If more than one developer or one fixer formulation are being used, a separate replenisher tank should be dedicated to each chemical. Differences in developer or fixer formulations from one manufacturer to another may contaminate similar solutions.

7. Processing

7.1 Manual Processing:

7.1.1 Follow the temperature recommendations from the film or solution manufacturer and check thermometers. Check thermometers and temperature-controlling devices periodically to be sure that the process temperatures are correct. Process temperatures should be checked at least once per shift. Keep the temperature of the stop (if used), fixer, and wash water within ±5°F (±3°C) of the developer temperature.

7.1.2 Caution—An unprotected mercury-filled thermometer should never be used for photographic processing applications because accidental breakage could result in serious mercury contamination of the process.

7.1.3 Control of processing solution temperature and immersion time relationships are instrumental considerations when establishing a processing procedure that will consistently produce radiographs of desired density and quality. The actual time and temperature relationships established are governed largely by the industrial radiographic films and chemicals used and should be within the limits of the manufacturer’s recommendations for those materials. When determining the immersion time for each solution assure that the draining time is included. Draining time should be consistent from solution to solution. The darkroom timers used should be periodically checked for accuracy.

7.1.4 Agitate at specified intervals for the times recommended by the film or solution manufacturer.

7.1.5 During film processing certain constituents within the solutions undergo chemical transformations that render them useless for further processing functions. In addition, some solution adheres to the film and is carried on into the next solution during processing. In order to compensate for these reductions in solution activity and volume, add replenishment solution. The volume of replenishment necessary is governed primarily by the number, size, and density of films processed. Manufacturer’s recommendations for replenishment are based on these criteria and will generally provide suitable results for the expected life of the solution. In any case, maintain solution levels to ensure complete immersion of the film.

7.1.6 The functional constituents in a freshly mixed developer solution tend to overreact on the initial films processed and may develop unexposed areas on the films. For this reason, measures should be taken to stabilize the activity of the solution and thus season the developer. This can be accomplished by the use of developer starter solution or by processing a series of seasoning films (see Note 1) in the freshly mixed solution. When using developer starter solution follow the manufacturer’s recommendations for the product. When using seasoning films expose the films with visible light and then...
develop these films in the solution to be seasoned. Use three 14 by 17-in. (35 by 43-cm) films, or equivalent, per gallon (3.8 L) of developer.

Note 1—Seasoning films may be new films or films that may not be generally suitable for production purposes due to excessive gross fog (base plus fog) density, expiration of shelf life, or other reasons.

7.1.7 Handle all films carefully during the processing cycle and allow adequate time for the film to sufficiently drain before transferring it to the next solution. The use of a stop bath or clear water rinse between developing and fixing may also be appropriate. The stop bath or clear water rinse serve to arrest development and also aids in minimizing the amount of developer carried over into the fixer solution. Insufficient bath-to-bath drain time may cause excessive solution carry-over which can contaminate and shorten the life of solutions in addition to causing undesirable effects on processed radiographs.

7.1.8 When washing films, a wetting agent may be appropriate to use to prevent water spots and streaking during drying.

7.1.9 **Caution—**Prior to placing films in the dryer, ensure that the dryer is clean and that adequate heat and ventilation are provided. During drying, visually examine the films to determine the length of time required for sufficient drying.

7.2 **Automated Processing:**

7.2.1 Immersion time and solution temperature relationships can be more closely controlled with automatic processing since the equipment provides external gages for monitoring purposes. As a general guideline, follow the manufacturer’s recommendations for industrial processing materials. However, the actual procedure used should be based on the variables encountered by the user and his particular needs. Check solutions daily or with established frequency based upon usage to ensure that temperatures are within the manufacturer’s recommendations. Check the processor’s thermometer with a secondary thermometer during normal maintenance procedures to verify correct processing temperatures within the manufacturer’s specifications.

7.2.2 Transport speed should be checked during normal maintenance procedures by measuring the time it takes for a given length of film to pass a specific point. (For example, if the indicated machine speed is 2 ft/min, place two marks on a length of film 1 ft apart. The second mark should pass a specific location, such as the entrance to the processor, exactly 30 s after the first mark has passed the same point.) An optional method for measuring processor speed is to install a tachometer on the main drive motor and determine desired RPM/processing speed relationships.

7.2.3 Agitation is provided by the action of the processor rollers, recirculation pumps, wash water flow, and no external agitation is needed.

7.2.4 For processors with replenishment systems, use the replenishment rates recommended by the film or solution manufacturer.

7.2.4.1 Accurate replenishment increases the useful life of solutions to a great extent by replacing ingredients that are depleted and maintains the process at a constant, efficient level.

7.2.4.2 Replenisher rates should be verified during normal maintenance procedures to ensure that the correct volumes are being injected into the solutions. For installations processing very large amounts of film (in excess of two tank turnovers of replenisher per week), checks on replenishment rates should be made more frequently. Processor manufacturer’s recommendations will generally provide an adequate procedure for checking replenishment volumes.

7.2.5 For seasonining freshly mixed developer solution, refer to the provisions in 7.1.6.

7.2.6 Always fill the fixer tank first, following the manufacturer’s instructions, then rinse and fill the developer tank. This minimizes the possibility of fixer accidentally splashing into the developer solution. When replacing or removing processor racks, always use a splash guard to further reduce the possibility of contamination.

7.2.7 **Drying:**

7.2.7.1 Make sure the dryer is clean and that no foreign material has settled on the rollers. Routinely examine the ventilation system to ensure that air paths are not blocked and that films are uniformly dried. There are two types of dryer systems used in automatic film processors for industrial radiographic films:

1. Convection dryers are circulating air systems with thermostatic controls. Normal drying temperatures range from 80 to 120°F when relative humidity (RH) conditions are approximately 40 to 75%. Relative humidities above 75% may require higher temperatures.

2. Infrared (IR) dryers are based principally on absorption rather than temperature. Relative humidity has no adverse affect on infrared drying. Infrared energy levels are preset by the manufacturer and provide a range of dryer settings.

7.2.7.2 The dryer efficiency can be tested by processing six consecutive 14 by 17-in. (35 by 43-cm) production films, or equivalent and examining them immediately after the drying cycle is complete. If damp or undried areas are observed, increase the dryer setting. Should an increase in dryer temperature for convension dryers or an increase in energy for infrared dryers not dry the film, the following conditions should be investigated:

1. Wash water that is too warm will cause excessive emulsion swelling. This can adversely affect film drying in convection dryers.

2. Incoming dryer air that is either too humid or too cold can adversely affect film drying in the convection dryer.

3. Check if oven-temperature devices or IR radiators, or both, are operational in infrared dryers.

4. The fixer solution activity may not be in accordance to manufacturing recommendations and should be tested in accordance with 8.6.

7.3 **Dry Processing:**

7.3.1 Follow manufacturers recommendations for thermal processor warm-up requirements.

7.3.2 Follow time-temperature recommendations from the manufacturer.

8. **Activity Testing of Solutions for Manual and Automatic Processing**

8.1 To establish a reliable procedure for determining the activity of processing solutions, it will be necessary to provide
a minimal amount of equipment and the proper selection and storage of radiographic control films.

8.2 Sensitometric Step Tablets:

8.2.1 A metallic step wedge or other suitable object(s) of uniform material and varying thickness(es), of either aluminum or steel can be used with a given X-ray or gamma-ray exposure to create a sensitometric control strip.

8.2.2 Electronic sensitometers and pre-exposed sensitometric control strips are also commercially available. The user of electronic sensitometers (film exposed to white light) should be aware that such usage, when accompanied by an appropriate white-light sensitive industrial film, results in greater response. Consequently, maintenance of developing parameters must be at a higher and more frequent level.

8.3 Radiographic Monitoring Films—Radiographic films are made in batches where the characteristics may vary slightly between batches. These changes from emulsion to emulsion may be detectable and could be confused with the changes in the radiographic processing system.

8.3.1 Monitoring films must be properly stored to ensure that the film characteristics of the first sheet will be the same as the last sheet used. See Guide E 1254

8.3.2 A monitoring film should be the same brand and type predominantly used in the facilities processing system

8.3.3 The first sensitometric film processed through freshly mixed and seasoned chemistry (see 7.1.6) will become the reference or standard for a box of control film.

8.3.4 Subsequent monitoring films are then produced on an as-needed basis and compared to the reference film to determine sensitometric changes within the processor. Generally, the higher the film volume processed, the more often QA checks should be performed.

8.3.5 If a monitoring film produces unusually high or low densities exceeding the tolerance limits, then the processing and sensitometric exposure conditions should be rechecked and repeated, if necessary. If the results are still out of tolerance, the cause must be located and corrected. Generally, a small adjustment in replenishment rates is necessary until a sensitometric film processor activity balance is established.

8.3.6 Whenever a new monitoring film becomes necessary to change from one emulsion to another, two films each (from the new box and the old box) should be exposed and processed simultaneously to adjust for normal film manufacturing sensitometric variations.

8.4 Densitometer:

8.4.1 A transmission densitometer should be used capable of reading densities from 0.0 to 4.0, with an aperture on the order of 1.0 to 3.0 mm in diameter. The densitometer should be calibrated in accordance with Practice E 1079.

8.5 Developer:

8.5.1 The developer activity should be checked by processing a pre-exposed sensitometric strip, a radiograph of a step wedge, or a test part for measuring four film densities, one at base + fog (unexposed area of film) and three between 1.5 and 4.0 in three areas of interest (high, medium, and low densities). These four areas are also known as the Aim Film densities.

8.5.2 The film densities in the areas of interest being monitored should be within ±10% of the original monitoring film density. Variations within this range are generally considered normal and should not adversely affect radiographic quality.

8.6 Fixer:

8.6.1 Fixer solution activity can be determined by measuring the clearing time. After the fixer solution has reached an operating temperature, place an unprocessed X-ray film into the fixer solution and measure the time required to remove the silver halide crystals; this is known as the clearing time. Removal of the X-ray film silver halide crystals can be observed when the X-ray film turns from a reflective color to a clear translucent film in the fixer. Clearing time should be 25% less than the fixer immersion time. The film should be periodically agitated during manual processing.

8.6.2 If physical examination shows unfixed spots or areas, the fixer should be discarded. Unfixed areas may appear as dull, nonreflective areas that may be yellowish in color depending on the actual lack of fixer activity.

8.7 Wash:

8.7.1 Proper washing is necessary to remove residual fixer from the film. If not removed from the film, these chemicals will cause subsequent damage (staining) and deterioration of the radiographic image. In low-density areas.

8.7.2 The effectiveness of washing may be checked using the residual thiosulphate chemicals test described in Guide E 94 or ANSI PH 4.8.

8.7.3 If physical examination of the films after washing shows dirt or scum that was not present before washing, the wash tanks should be drained and cleaned. Drain wash tanks whenever they are not being used. In order to minimize washing artifacts it is recommended that scavenger films be processed at start up to clear out scum and foreign material; the use of algaecides is also recommended to retard the growth of organisms within the wash bath.

8.7.4 The newer cold-water-type processors do not require a control valve to regulate water temperatures. However, many older-type processors require that the incoming water temperature be set within certain limits of the developer temperature. Exceeding these limits may not allow the processor to adequately control the developer temperature, which may cause density variations.

9. Records

9.1 Accurate records should be kept of the following items:

9.1.1 Brand name and model of processor, if used.

9.1.2 Brand names and batch number of chemicals used.

9.1.3 Time of development.

9.1.4 Temperature of processing chemicals.

9.1.5 Date new chemicals were placed in use.

9.1.6 Replenishment rates.

10. Maintenance

10.1 Maintenance schedules provided by the manufacturer for preventive maintenance should be adhered to in order to assure consistent chemical and mechanical operation as set forth by the manufacturer.

11. Keywords

11.1 automatic processing; film; manual processing; processing; radiographic; solutions